ABX	
INFECTION	
Fungi	2
Meningitis	2
BRAIN ABSCESS	5
SPINAL CORD ABSCESS	9
SUBDURAL EMPYEMA (CRANIAL AND SPINAL)	9
CRANIAL EPIDURAL ABSCESS	
SPINAL EPIDURAL ABSCESS	11
ENCEPHALITIS	11
HIV	
Vacuolar myelopathy	
CNS-Immune Reconstitution Inflammatory Syndrome (IRIS)	15
PROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY (PML)	16
PRIONS	16
Creutzfeldt-Jakob disease (CJD)	
CRANIAL OSTEOMYELITIS	
VERTEBRAL OSTEOMYELITIS	
Pott's disease	
PARASITES	
Neurocysticercosis (NCC)	
Echinococcosis	
Amebic meningoencephalitis, Abscess	

ABX

- CEPHALOSPORINS and CARBAPENEMS can safely be used in patients with an allergic reaction to penicillins that is not type 1 reaction (e.g. anaphylaxis, urticaria, bronchospasm) or exfoliative dermatitis (Stevens-Johnson syndrome, toxic epidermal necrolysis).
- chlorhexidine is contraindicated at age < 2 months (use Betadine).

INFECTION

- 1. ENCEPHALITIS viral invasion of brain parenchyma; often *diffuse*.
- 2. **CEREBRITIS** *focal* **bacterial** invasion of brain parenchyma; no capsule or pus.

DIAGNOSIS

- **CT / MRI** is indicated in any patient with syndrome compatible with CNS infection!
- **CSF** is indicated in any patient (after exclusion of intracranial mass).
- **CBC with differential, ESR, CRP, procalcitonin. procalcitonin** norm [0.1 ng/mL]; > 0.25 ng/mL can indicate infection
- 2-3 **blood cultures** should be obtained from all patients (even when antimicrobial therapy has already been administered).
- **search of infection source** chest X-ray (!), echocardiography, UA, cultures of other body fluids, bone scans.
- brain biopsy is still standard of diagnosis in some specific CNS infections.

INTRO (2)

FUNGI

opportunistic organisms – infect only *immunosuppressed* individuals.
 (except few pathogenic fungi – *Histoplasma**, *Blastomyces**, *Coccidioides**, *Paracoccidioides*** – may infect *normal* hosts).

*endemic to some areas of North America **endemic to some areas of Central-South America

MENINGITIS

MENINGITIS - inflammation of meninges (inflammatory response is generally confined to *arachnoid*, *subarachnoid space* and *pia* – i.e. **LEPTOMENINGITIS**).

meningism (pseudomeningitis) – headache and meningeal irritation in child or young adult with acute febrile illness; CSF pressure↑ but normal in other respects.

Argyll Robertson pupil – small irregular pupil, reacts to convergence, but not to light – basilar luetic meningitis.

HEUBNER arteritis – arteritis of circle of Willis due to basal meningitis (syphilis, tbc, fungi).

ETIOLOGY

skull base fracture with CSF leak - Str. pneumoniae

S. aureus and coagulase-negative staphylococci - predominant organisms in CSF shunts

Viral meningitis – most commonly enteroviruses

Fungal meningitis (occurs only in *immunosuppressed hosts*, esp. lymphoma & leukemia, AIDS) – most commonly *Cryptococcus neoformans* (basal ganglia lacunes)

TBC, syphilis - exudate tends to pool in basilar cisterns

DIAGNOSIS

LUMBAR PUNCTURE ASAP - gold standard for diagnosis

glucose - most specific (esp. in bacterial, tuberculous, cryptococcal meningitis; normal in viral meningitis)

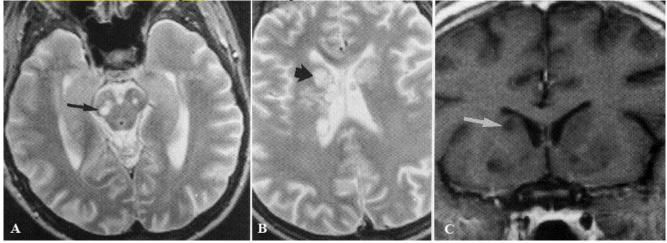
VDRL is test of choice in CSF for neurosyphilis

• post-treatment CSF examination is not meaningful criterion of recovery (i.e. CSF need not be reexamined if patient is clinically well!).

Imaging

a) severe acute meningitis:

1) striking *pial and ependymal enhancement* (superficially looks like SAH, but seen only in contrast-enhanced CT; vs. SAH)


contrast enhancement of leptomeninges is always abnormal except after *recent neurosurgical procedure*.

- 2) brain edema.
- 3) complications of meningitis (subdural collections, hydrocephalus, cerebral infarction).
- b) <u>chronic meningitis</u> may be *no imaging findings* or merely minimal ventricular enlargement.

Etiologic diagnosis in *chronic meningitis* may require meningeal biopsy

INTRO (3)

10% *CRYPTOCOCCAL* meningitis cases develop **CRYPTOCOCCOMAS**

TREATMENT

- in CSF, humoral defense mechanisms (Ig and complement activity) are virtually absent; opsonic activity is often undetectable even in infected CSF (phagocytosis of encapsulated bacterial pathogens is inefficient) bacteria commonly reach very high densities in CSF use of *bactericidal agents* is mandatory part of therapy!
- two *blood samples are drawn* for culturing → *empirical antimicrobial therapy* is started

DEXAMETHASONE 10q6 IV to abolish destructive inflammatory / immune-mediated response (vasogenic and cytotoxic brain edema - decrease rates of hearing loss and neurological complications) - for 4 days of bacterial meningitis (3 weeks in TBC)

First dose of DEXAMETHASONE should be administered 20 min before first antimicrobial dose. N.B. **VANCOMYCIN** effect may be adversely affected (since meningeal inflammation improves VANCOMYCIN penetration into CSF); H: use **higher doses** of VANCOMYCIN (15 mg/kg q6h) or **intrathecal** VANCOMYCIN.

<u>Antimicrobial therapy</u>: (must be bactericidal in CSF – i.e. maximum tolerated doses!)

- will not significantly alter CSF profile (WBC count, glucose & lactate concentration, antigen test results) for at least 2-3 days.
- will decrease sensitivity of Gram's stain & culture (window of 2-3 hours after giving parenteral antibiotics when CSF cultures are not adversely affected).

Gram's stain and culture *should be negative* in CSF obtained 24 hours after initiation of IV antimicrobial therapy, if organism is sensitive to that antibiotic.

Crucial step is to initiate ANTIMICROBIAL THERAPY immediately!!!!!!!!

If suspect meningococcus, give PENICILLIN G before transporting to hospital!

CEFEPIME* 2 g q8h + VANCOMYCIN 15mg/kg q12h (goal trough: 15 – 20 mg/L) for 14 days *for type I penicillin hypersensitivity (i.e. anaphylaxis) substitute with AZTREONAM 2 g q6h or CIPROFLOXACIN 400 mg q8h

N.B. only 3rd or 4th generation cephalosporins are used.

+ **RIFAMPIN** CHEMOPROPHYLAXIS for family members / intimate contacts of child with meningococcal or *H. influenzae* infection.

Treatment of <u>CRYPTOCOCCAL</u> meningitis – AMPHOTERICIN B + FLUCYTOSINE for 2 weeks \rightarrow FLUCONAZOLE for 8 weeks \div lifelong.

- often develop symptomatic intracranial hypertension.
 - ventriculomegaly (hydrocephalus) is not always present
 - most patients do well with serial lumbar punctures combined with antifungal therapy.
 - in one case series (50 patients), only 26% patients needed permanent shunting.
 - shunting during active fungal infection is not an issue if antifungal therapy has been started prior to implantation.
 - no cases of shunt infection.
 - no cases of cryptococcal peritonitis after shunting.

<u>MORTALITY</u> \leq 10-20% (many deaths occur during *first 48 hours of hospitalization*); 50-90%* in untreated cases.

*almost 100% in pneumococcal meningitis!

Austrian syndrome (triad of pneumococcal meningitis, pneumonia, and endocarditis) has particularly high fatality rate.

COMPLICATIONS

Seizures Stroke

Hearing loss

Mental retardation - bacterial meningitis is one of most preventable causes of mental retardation Brain abscess, subdural empyema

Subdural effusions - usually in infants as self-limited process (as inflammatory process subsides, subdural fluid is reabsorbed);

<u>Treatment</u> – *repeated daily needle aspirations* through coronal sutures;

- *indications*: infected fluid (prolonged fever), increased ICP, rapidly enlarging head circumference in child, focal neurological findings (seizures).
- no more than 20 mL/d of CSF should be removed from one side (to prevent sudden shifts in intracranial contents).
- if effusion persists after 3-4 wk of taps \rightarrow surgical exploration for possible excision of subdural membrane is indicated.

Hydrocephalus

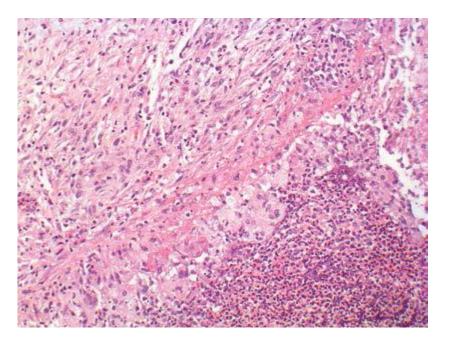
- large numbers of leukocytes in subarachnoid space contribute to purulent exudate and impair CSF absorption by arachnoid villi → *COMMUNICATING HYDROCEPHALUS*.
- pia-arachnoid becomes thickened \rightarrow adhesions \rightarrow interfere with CSF flow from 4th ventricle \rightarrow *OBSTRUCTIVE HYDROCEPHALUS*.
- ventriculitis is nearly uniformly present.
- H: EVD until CSF sterility is achieved

Purulent ventriculitis - in severe ventriculitis, EVD/lumbar drain is not efficient enough, especially when CSF contains pus/flakes (niduses of infection adherent to the choroid plexus and ependymal lining) - act as continuous source of infection – consider endoscopic lavage:

- clamp EVD \sim 12 hours.
- insert *rigid endoscope* \sim 4–5 cm lateral to midline and \sim 1–2 cm anterior to coronal suture.
- copious *irrigation with Ringer lactate*.
- *pus is aspirated*;
- after ipsilateral ventricle is cleansed, a generous *septostomy* is performed, opposite ventricle entered, and all the purulent material is removed in a similar fashion.

SPINAL MENINGITIS (ARACHNOIDITIS)

- *injury to roots* (as they traverse subarachnoid space; permanent intradural adhesions) \rightarrow multiple radiculopathies: radicular pain, sensory loss, motor weakness, sphincter dysfunction.


BRAIN ABSCESS

ETIOLOGY

- HIV Toxoplasma gondii, Mycobacterium tuberculosis.
- solid-organ transplants fungi (90%).
- a) direct spread from CONTIGUOUS CRANIAL SITE (40-50%): otitis media, sinusitis

N.B. brain abscess in child < 2 years suggests associated bacillary meningitis

b) hematogenous spread from REMOTE INFECTION SITE (30%): pulmonary infection, endocarditis

- 1) streptococci 50-70% brain abscesses.
- 2) <u>anaerobic bacteria</u> common in *chronic otitis media* or *pulmonary disease*.
- 3) *Staphylococcus aureus* and Gr- rods common after *cranial penetration* from surgery or trauma.

N.B. pneumococci, meningococci, Haemophilus influenzae (major causes of bacterial meningitis) are rarely recovered from brain abscess!

- 4) fungi are common in *immunosuppressed*
- 5) parasites are common in *immunosuppressed*.
- intact brain parenchyma is relatively resistant to infection in order for brain abscesses to form, there must be *pre-existing compromised area* (*ischemia, necrosis, hypoxia*) in brain tissue.

Hematogenous spread – following characteristics:

- 1) multiple* brain abscesses (although solitary lesions may also occur)
- 2) distribution of MCA parietal lobe predominates (highest blood flow).
- 3) initial location at gray matter-white matter junction.

*another cause of multiple abscesses – **immunosuppression**.

CLINICAL

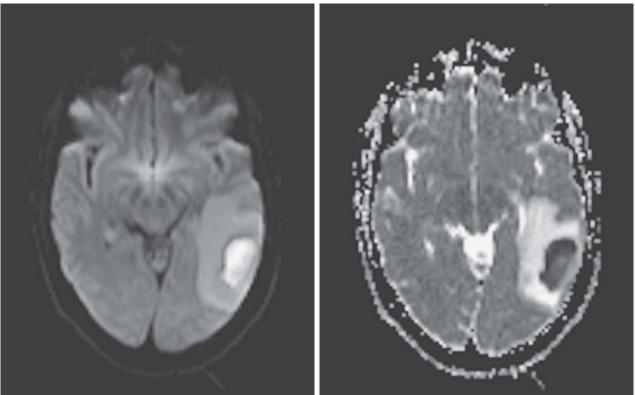
- subacute expanding infectious mass:

- 1) ICP[↑] prominent headache, AMS, vomiting, papilledema (rare finding in meningitis!).
- 2) focal neurological deficit seizures are particularly prominent!
- 3) infection -fever < 50% (i.e. may be minimal or absent!!!)

Abrupt neurologic deterioration:

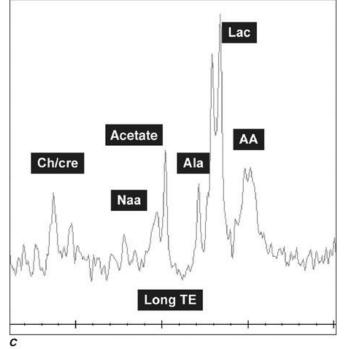
- a) *abscess rupture* into ventricular system \rightarrow ventriculitis & hydrocephalus, shock & death
- b) *abscess rupture* into subarachnoid space \rightarrow **meningitis**
- c) *brain herniation*
- d) spontaneous hemorrhage
- encapsulation is more complete (more mesenchymal cells → tougher capsule) on cortical side (than on ventricular side) *propensity of abscesses to extend and rupture into ventricular system*.

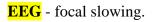
DIAGNOSIS


Lumbar puncture is contraindicated - risk of herniation!

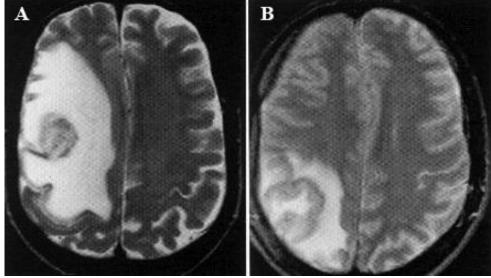
CSF - aseptic meningeal reaction (pressure[↑], 0-1000 PMNs, protein slightly[↑], normal sugar)

MRI w/wo is study of choice - initial detection and subsequent monitoring. DWI has specificity 96% for differentiation from brain tumors.


Abscess, stroke, and lymphoma (high cellularity) have *diffusion restriction* (bright on DWI, dark on ADC), whereas gliomas and metastases do not restrict diffusion! Same as epidermoid cyst (bright DWI) vs. arachnoid cyst (normal DWI)

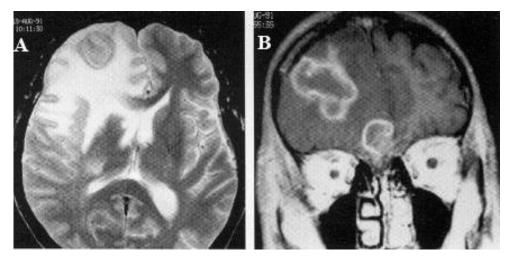

Encapsulated stage: *low T1 intensity (T2 hyperintense)* lesion with *diffusion restriction* surrounded by *edema*.

Uniform* *ring of contrast enhancement* surrounded by hypodense region of *edema*.



Hematogenous source:

- a) ESR, CRP, procalcitonin
- b) CXR, ECG, cardioECHO
- c) **blood cultures** (positive in $\approx 10\%$ cases).
- d) serum should be sent for *antitoxoplasma IgG* (in patients with AIDS).


Solitary toxoplasma abscess (A) is indistinguishable from solitary primary cerebral lymphoma (B):

Toxoplasma abscess:

NEURO

INTRO (8)

TREATMENT

a/b: Blood cx and biopsy first!!!

- <u>neurosurgical patient</u>: VANCOMYCIN + CEFEPIME + METRONIDAZOLE for 6-8 weeks (→ oral for additional 4-8 weeks) until abscess cavity resolves completely (neovascularity persists!)
 alternative to CEFEPIME + METRONIDAZOLE MEROPENEM
- <u>empirical therapy for AIDS patient with intraparenchymal lesion</u>:
 - A) > 1 enhancing lesion OR positive toxoplasma serology = presumptive diagnosis of TOXOPLASMA ENCEPHALITIS → 1-2 week trial of antitoxoplasma therapy (objective response must be seen on imaging): PYRIMETHAMINE (+ LEUCOVORIN) + SULFADIAZINE
 - B) 1 enhancing lesion AND negative toxoplasma serology \rightarrow brain biopsy.

Response to antibiotics is best monitored by serial MRI

Even lesions with thick, well-developed ring enhancement may disappear with medical management!

Neurosurgery:

Abscess > 2.5-3.0 cm should go to OR! Must be mature (symptoms > 7-14 days) – avoid operating on cerebritis!

- Practically, every patient needs at least biopsy for culture & stain (Gram, acid-fast, fungal)!!!
 - a) <u>stereotactic abscess aspiration</u> ± <u>catheter drainage</u> procedure of choice (etiological diagnosis and treatment); requirement abscess > 1 cm showing central cavity*

*aspiration *during cerebritis stage* \rightarrow hemorrhage

N.B. <u>enhancing ring may appear at late cerebritis stage</u> before true capsule has been formed! H: DELAYED SCAN (obtained 30 min. after IV

contrast) - *contrast diffusion into low-density center of abscess* (vs. stage of formed true capsule - no inward diffusion of contrast).

- leaving continuous drainage catheter is not recommended.
- if organism is known, indications for just decompression:
 - 1) proximity **to ventricles** (risk of catastrophic rupture \rightarrow ventriculitis \rightarrow hydrocephalus)
 - 2) significant **mass effect** (mostly if abscess > 2.5 cm)
 - 3) failure to demonstrate abscess shrinkage in 4 weeks (antibiotic failure)
- b) complete abscess extirpation for accessible mature abscess rapid decompression, abx duration↓; may cause damage to brain parenchyma (→ risk of seizures); indications:
 - 1) gas within abscess cavity
 - 2) fungi, tbc, branching bacteria (esp. Actinomyces, Nocardia species)
 - 3) retained foreign bodies (incl. bone fragments)
 - 4) large (> 3 cm), multiloculated, & readily accessible

INTRO (9)

- 5) **posterior fossa** (potential of brain stem compression)
- 6) **resistant** to treatment (getting bigger in 2 weeks, no decrease in 4 weeks)

± prophylactic AED for at least 1 year (risk of seizure disorder in 80-90% patients!)
± corticosteroids (only for profound cerebral edema with impending herniation!; may decrease penetration of antibiotics! - discontinue when edema and mass effect improve)

Mortality 5-20% (if untreated $\approx 100\%$).

SPINAL CORD ABSCESS

particular high risk factor – IV drug abuse.

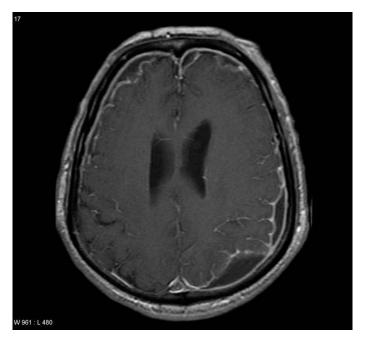
TREATMENT

- 1. Antibiotics minimum 4 weeks following surgery.
- 2. **Steroids** (**DEXAMETHASONE** 4-10 mg q6h during entire course of treatment) to reduce spinal cord swelling.
- 3. Surgical drainage of abscess cavity LAMINECTOMY:
 - *abscess aspiration* for culture & stain (Gram, India ink).
 - **myelotomy** over length of abscess.
 - *irrigate* (wound and abscess cavity) with antibiotic solution.
 - *closure* in anatomical layers.

SUBDURAL EMPYEMA (CRANIAL AND SPINAL)

- empyema *evolution is remarkably rapid* (along falx and over convexities).
- subdural empyema may breach arachnoid (arachnoid is not very strong barrier) \rightarrow meningitis.
- septic thrombophlebitis extends from dural sinuses to cortical veins → cortical venous infarction of gray and white matter drained by thrombosed vessels → brain abscess (25% patients!).

Patient is acutely ill


<u>Spinal subdural empyema</u> - fever with rapidly progressive spinal cord compression.

- **backache** is not as characteristic as in spinal epidural abscess.
- tenderness along spine is often absent (vs. spinal epidural abscess).

MRI (procedure of choice) – T1 hypointense crescent, diffusion restriction

- *intense contrast enhancement* of empyema margin (fine line).
 - mass effect.

INTRO (10)

TREATMENT

- surgical emergency!

• anticonvulsants should be administered prophylactically.

Intravenous antibiotic therapy (same as for brain abscess)

Immediate surgical drainage:

- A. <u>**CRANIAL**</u> start with **multiple burr holes** \rightarrow **craniotomy** PRN.
 - do not try to remove material adherent to cortex (\rightarrow infarction)
 - *drains* are left in subdural space.
 - postoperatively, repeat CT / MRI scans *reoperation* (drainage of loculated pockets) is typically necessary.
- B. <u>SPINAL</u> laminectomy \rightarrow dural incision \rightarrow drainage.
- mortality 10-40% (almost fatal if untreated).
- in 8-46% patients **chronic epilepsy** results.

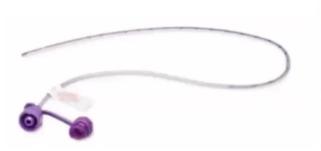
CRANIAL EPIDURAL ABSCESS

- almost always associated with *overlying infection in cranial bones* (e.g. penetration from chronic sinusitis or mastoiditis; most common cause is craniotomy complicated by wound infection).
- slowly growing mass (*does not produce sudden major neurologic deficits* unless complicated by deep extension)
- *rim of contrast enhancement* (thicker and more irregular than with subdural empyema)

TREATMENT

Same as for subdural empyema except: craniectomy (debridement of infected bone) may be needed

SPINAL EPIDURAL ABSCESS

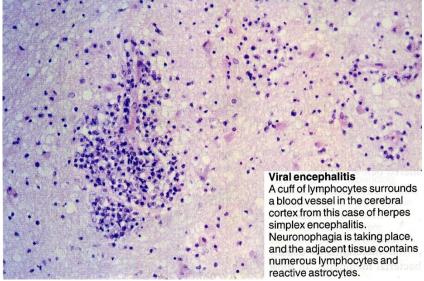

- any infectious phlegmon involving epidural space, even without demonstrable contained pus.

- most common ETIOLOGY (vs. cranial epidural abscess) <u>HEMATOGENOUS SPREAD from remote site</u>
- also **<u>EXTENSION FROM VERTEBRAL</u>** osteomyelitis / discitis

Back pain & tenderness (on percussion & movement) \rightarrow radiculopathy, myelopathy

Immediate surgery: laminectomy - surgical debridement of epidural space.

• long abscesses - skip laminotomies and pediatric feeding tube / Foley / EVD irrigation:


Antibiotics: 4-6 weeks IV \rightarrow 2-3 months oral.

paralysis 36 hours duration \rightarrow < 50% will show some return of motor function.

• in *tuberculous epidural abscess* motor recovery has been reported even after paralysis lasting for weeks.

ENCEPHALITIS

- perivascular mononuclear cuffing in cortex

PANENCEPHALITIS = **leukoencephalitis** (i.e. myelinoclastic) + **polioencephalitis** (i.e. polioclastic)

- viral encephalitis is polioclastic, vs. postinfectious encephalitis myelinoclastic
- encephalitis is almost invariably associated with *meningeal inflammation* (MENINGOENCEPHALITIS) and sometimes with simultaneous *involvement of spinal cord* (ENCEPHALOMYELITIS).
- necrotizing vasculitis with focal (petechial) hemorrhages.

• severe vasogenic edema \rightarrow ICP \uparrow .

prodromal viral illness \rightarrow dramatic ENCEPHALOPATHY: **AMS**, psychiatric symptoms, seizures (> 50%), paralysis

<u>CSF</u> should be examined in all patients!!! (unless contraindicated by ICP $\uparrow\uparrow\uparrow$).

Characteristic CSF profile \approx viral meningitis

- 1) lymphocytic pleocytosis 5-500
- 2) normal glucose
- 3) protein↑
- 4) **PCR** diagnostic procedure of choice!!! sensitivity (95-100%) and specificity (< 100%) exceeds brain biopsy (thus, role of **brain biopsy** has declined greatly*)

*still diagnostic criterion standard for *rabies*

EEG - diffuse slowing

Neuroimaging – focal or diffuse encephalitic process (*low density with mass effect* predominantly in white matter – i.e. vasogenic edema).

• occasional *intracerebral hemorrhages* within lesion.

Major diagnostic impetus is to distinguish HSV from other viruses!

Other viruses \rightarrow **supportive measures** (in ICU initially)

MORTALITY depends to etiology (may be up to 75%*).

*100% in rabies or VZV in immunosuppressed patients

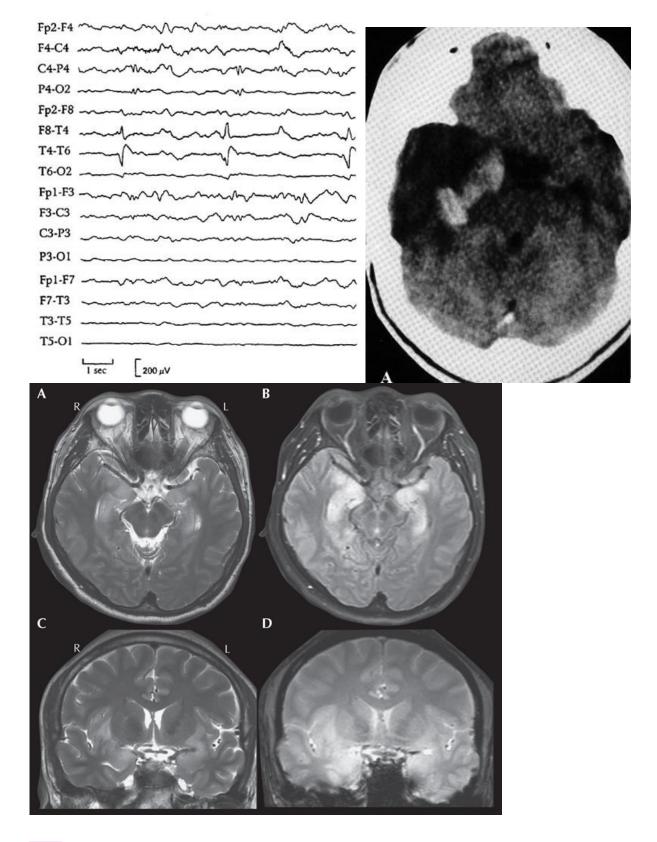
HERPES SIMPLEX

- focal* encephalitis with intense necrosis + petechial hemorrhages, with RBCs in CSF; inferomedial frontotemporal regions:

- 1) temporal lobe seizures (EEG *paroxysmal features in temporal lobe* paroxysmal lateral epileptiform discharges PLEDs)
- 2) olfactory / gustatory hallucinations, anosmia
- 3) bizarre behavior / personality alterations, memory disturbance

*tropism for TEMPORAL, ORBITAL-FRONTAL CORTEX, LIMBIC STRUCTURES and PONS!

N.B. clinical criteria alone are not reliable in differentiating HSV and non-HSV encephalitis!


Neurologic disease has been associated with all herpesviruses but HHV-7

- 1) herpes simplex virus type 1- most common cause of *sporadic encephalitis*!
- 2) herpes simplex virus type 2 (encephalitis in neonates)
- 3) varicella-zoster virus
- 4) Epstein-Barr virus
- 5) cytomegalovirus
- not related to immunosuppression.

NEURO

INTRO (13)

- *virus reactivation* lying dormant in trigeminal ganglia (i.e. virus spreads to CNS transneuronally along CN5)
- often high fever (104-105°F) initially.
- herpetic skin lesions are seen in only few cases.
- characteristically AGGRESSIVE COURSE; more indolent in *immune-compromised persons* (indicates role of immune system in destructive nature of herpes encephalitis).

HSV \rightarrow urgent ACYCLOVIR 10-15 mg/kg IV q8hr for 10-21 days (also useful in *selected severe cases* of EBV or VZV).

Initiating treatment *before definitive diagnosis* of HSV encephalitis is now common practice!

- discontinue if PCR is found negative.
- if clinical deterioration occurs over next 48-72 hours with ACYCLOVIR \rightarrow *brain biopsy*.
- *decompressive operation* may be necessary if **steroids** (and other measures) are inadequate to control severe ICP elevations.

ARBOVIRUS

- most common causes of *endemic encephalitis*!
 - A) mosquito-borne
 - B) *tick-borne* does not occur in America; **MRI** *increased T2 signal* in basal ganglia and thalami

ENTEROVIRUS

outbreaks during warm weather

SYPHILIS – very long rod cells RABIES – Negri bodies in cerebellum

HIV

Neuroinvasion occurs in practically every patient

HIV - neurotropic virus

N.B. in nervous system, virus is detected only in microglial cells; virus is not found in neurons or glia!

<u>Clinical syndromes</u> - neurological disease at any anatomic level:

- 1) cognitive dysfunction \rightarrow AIDS-dementia complex \rightarrow coma.
- 2) seizures (focal or generalized)
- 3) various focal deficits
- 4) aseptic meningitis
 - most common acute bacterial meningitis L. monocytogenes
- 5) myelopathy
- 6) peripheral neuropathies autoimmune demyelination and/or axonal degeneration
- 7) myopathy

<u>Secondary disorders</u> - result from other identifiable causes:

- A. Opportunistic infections:
 - 1) toxoplasma encephalitis most common cause of intracranial mass lesion in AIDS!!!
 - 2) cryptococcal, tbc meningitis
 - 3) CMV encephalitis / polyradiculopathy
 - 4) progressive multifocal leukoencephalopathy (PML) JC virus
- B. Neoplasms:
 - primary CNS lymphoma EBV genetinė medžiaga (PCR) aptinkama ≈ 100% atvejų!!!
 - 2) metastatic
- C. Drug complications
- D. Metabolic-nutritional disorders
- E. Cerebrovascular complications <u>AIDS is additional risk factor for stroke (ischemic and hemorrhagic)</u>

VACUOLAR MYELOPATHY

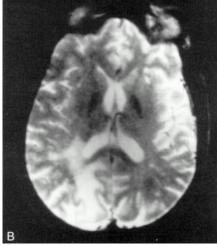
- diagnosis of exclusion.

Imaging - normal or *spinal cord atrophy*.

• T2-MRI - *nonenhancing high-signal areas* (extensive vacuolation) confined to posterior columns or diffuse.

CSF - usually normal.

Although no specific treatment is approved / effective, viral control is important.


CNS–Immune Reconstitution Inflammatory Syndrome (IRIS)

- develops *after the initiation of HAART* in the setting of HIV-related severe immunosuppression (anergic state).
- intense inflammatory reaction to dead or latent organisms or to self-antigens.
- <u>clinical range</u>: mild (self-limiting mild symptoms and eventual immune restoration) to fulminant death.
- <u>diagnosis of exclusion</u>
- responds to **steroids**.

INTRO (16)

Progressive Multifocal Leukoencephalopathy (PML)

- JC virus reactivation in cellular immunodeficiency states.
 - focal parieto-occipital demyelination:
 - no mass effect;
 - no contrast enhancement with gadolinium.
 - relative sparing of grey matter!

<u>Definitive diagnosis</u>: **PCR** in $CSF \rightarrow Brain biopsy$ No specific treatment = high mortality rate

PRIONS

- fatal **TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES** (noninflammatory neurodegenerative disorders)

PRION - infectious protein (**prion protein** PrP)

• **PrP gene** (termed *PRNP*) - single copy is located on short arm of chromosome 20 - <u>PrP^C</u> (normal cellular isoform of PrP) is normal cell surface glycoprotein

Prion diseases are result of PrP^{Sc} (abnormal isoform of PrP^C; ^S for "scrapie").

- PrP^{C} exists as α -helical structure.
- PrP^{Sc} exists as β-pleated sheets (arise from post-translational changes in PrP^C conformation) resists proteolytic digestion → spontaneously aggregates to rodlike or fibrillary particles (*PRION RODS*).
- <u>PrP^{Sc} facilitates, in cooperative fashion, comparable transformation of other PrP^C molecules</u> PrP^{Sc} acts as template that promotes cascading PrP^C conversion ability to replicate! (infectious nature of PrP^{Sc} molecules).
- *intracytoplasmic vacuoles* in cortical neurons and glia → vacuolated areas coalesce into cystlike spaces ("status spongiosus").
- severe neuron loss \rightarrow reactive astrocytic gliosis \rightarrow **cortical atrophy** without white matter changes.

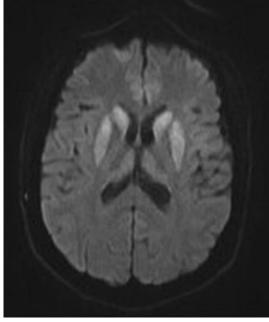
<u>Clinical</u>

- *long incubation* (several months ÷ several years).
- *protracted course* generally ending in death.
- visada apima CNS (ir tik CNS):
 - 1) progressive dementia
 - 2) motor deficits
 - 3) seizures

<u>Diagnosis</u> confirmation – **brain biopsy**.

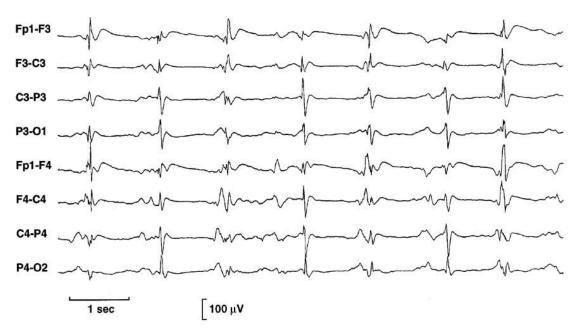
<u>Treatment</u> - supportive (e.g. suppression of myoclonus or seizures).

Chirurginiams instrumentams: N.B. irradiation is ineffective!


- a) autoklavavimas 60 min. 134°C.
- b) immersion in 1 *N* NaOH for 1 hour.

CREUTZFELDT-JAKOB DISEASE (CJD)

most common prion disease!
 Sporadic CJD (90%)
 Infectious CJD (rare) – transmission: *human-to-human parenteral* or *ingestion of beef*


- 1. Rapidly progressive **dementia** \rightarrow mutism & global dementia.
- 2. **Involuntary movements** (esp. *myoclonus* provoked by sensory stimuli startle myoclonus)

MRI (bright lesions in cortex and basal ganglia+pulvinar):

EEG - pathognomonic - generalized bilaterally synchronous **periodic triphasic spiking** activity (resembles ECG).

CSF immunoassay for protein 14-3-3 – high sensitivity and specificity (90-92%) for CJD – more specific/sensitive test for Prion disease - **RT-Quic test**.

Brain biopsy with immunostaining for PrP^{Sc} is gold standard for establishing diagnosis (almost never necessary).

> 90% miršta per 1 metus!

CRANIAL OSTEOMYELITIS

Look for postop bone flap absorption on CT!

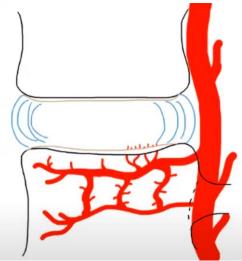
GRADENIGO'S syndrome – *apical petrositis* (osteomyelitis) involving CN5 & CN6.

- 1. Surgical debridement (removal of infected bone)
 - adequate margin of normal bone is removed to minimize risk of recurrence.
 - *after at least 1 year* with no evidence of inflammation, **cranioplasty** may be performed.

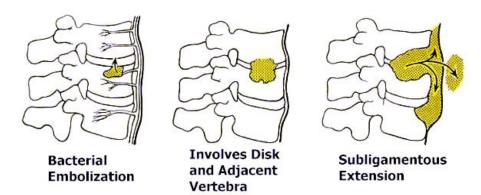
2. Antibiotics

- MRSA is treated with 6 weeks of VANCOMYCIN
- if hardware is present (e.g. cranial mesh), add **RIFAMPIN**.

VERTEBRAL OSTEOMYELITIS


- destructive disco-vertebral lesion.

Infections usually involve disk space (vs. malignant lesions!)


- hematogenous spread to metaphyses:

NEURO

INTRO (19)

- well-recognized risk factor IV drug use.
- <u>complications</u> *paraspinal extension* paraspinal abscess, psoas abscess, anterior epidural abscess;
 - paraspinal masses are large in indolent infections (such as tuberculosis).

Spine tenderness, Deep back pain - exacerbated by motion + unrelieved by rest.
 Fever (25%).

N.B. all signs of infection may be absent and course may be indolent! <u>Neurological involvement</u> – (in 40% of cases caused by tuberculosis!):

- a) epidural extension
- b) spine instability and fractures

Blood culture x2 ASAP before starting antibiotics! (else may need IR biopsy)

CT - punched-out erosions of bone adjacent to involved disc ("moth-eaten" endplates)

MRI (diagnostic method of choice – <u>highly sensitive and specific</u>!:

- 1) edema low T1 signal (high signal on T2) throughout disc and in adjacent vertebral bodies.
- 2) thinning and eventual loss of dark line of vertebral end-plates.
- 3) diffuse enhancement.

INTRO (20)

N.B. in *degenerative disk disease*, changes are less uniform, disk is desiccated and bone destruction is absent, no paravertebral soft-tissue masses.

TREATMENT

- 1. Infection control
 - MRSA is treated with 6 weeks of VANCOMYCIN; if hardware is present, add RIFAMPIN.
- 2. Pain comfort and prevention of further deformity (brace)
- 3. **Operative debridement** limited indications:
 - a) epidural extension as abscess with progressive neuro deficits
 - b) progressive spinal deformity / instability
 - c) recurrent/persistent bacteremia
 - d) worsening pain despite appropriate antimicrobial therapy
 - just pain, including radicular pain (tends to get better with abx) are not surgical indications.
 - instrumentation*, discectomy up to corpectomy for instability / kyphosis.

**modern instrumentation* is titanium – does not need to be isolated from site of infection.

• when infection is controlled, disc space will eventually spontaneous fusion.

POTT'S DISEASE

M. tuberculosis

- tendency to involve *multiple segments* (through subligamentous paraspinal spread).
- highly aerobic bacteria discs are spared until later in course "skip" lesions

Radiographic changes:

- 1. Reactive sclerosis on a progressive lytic process
- 2. Enlarged psoas shadow = abscess formation
 - In contrast to pyogenic disease, calcification is common in tuberculous lesions!
- 3. Collapse with anterior wedging (gibbus) \rightarrow neuro deficits
- 4. Thin and smooth enhancement of abscess wall (vs. pyogenic spondylitis thick and irregular enhancement of abscess wall)

INTRO (21)

PARASITES

NEUROCYSTICERCOSIS (NCC)

- intracranial encystment of larva of Taenia solium

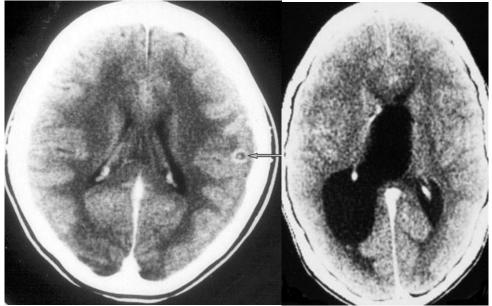
• <u>endemic</u> in South and Central America + Madagascar.

Life cycle of Taenia solium (pork tapeworm):

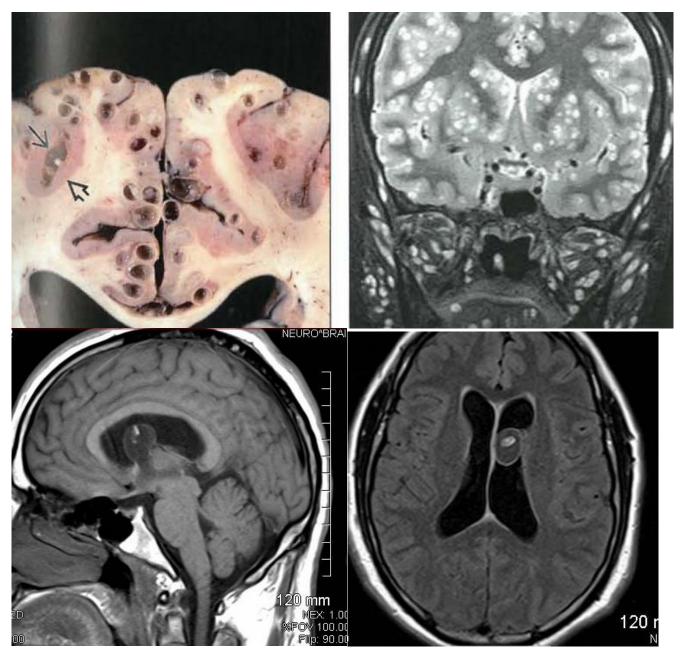
egg in human feces

INTERMEDIATE HOST (pigs, humans): egg in mouth $\rightarrow \dots \rightarrow$ larvae in tissues = cysticercosis

DEFINITIVE HOST (only humans - nervous system is not affected): larvae in mouth \rightarrow adult tapeworm in small bowel \rightarrow egg in feces


Little inflammatory response (edema) occurs as long as larva is alive! Larva dies in brain 2-6 years after ingestion of eggs: release of antigens from dying parasite \rightarrow vigorous inflammatory tissue reaction. Eventually, calcified nodule.

Location of cysts:


- 1. **Parenchymal** \rightarrow seizures, other focal deficits; cysticercotic encephalitis produced by immunologic reaction \rightarrow dementia, behavioral abnormalities.
- 2. Meningeal: chronic basal meningitis; obstructive hydrocephalus); extremely high mortality
- 3. Ventricular: obstructive hydrocephalus with intermittent intracranial hypertension (BRUN syndrome).
- 4. **Spinal cord**: radiculopathy or myelopathy.

CT, MRI

non-enhancing edema \rightarrow **homogeneous enhancing lesions** \rightarrow **SYMPTOMATIC STAGE:** low density **nonenhancing cyst(s)** with **eccentric punctate high density** (**scolex** = tapeworm head) \rightarrow **ring enhancing** cysts with inflammatory **edema** \rightarrow **complete resolution** or oval **calcifications** without edema.

INTRO (23)

- test of choice is serum serology
- eosinophilia.
- **biopsy** sometimes needed for diagnosis (no diagnostic test identifies all cases of cysticercosis).

TREATMENT

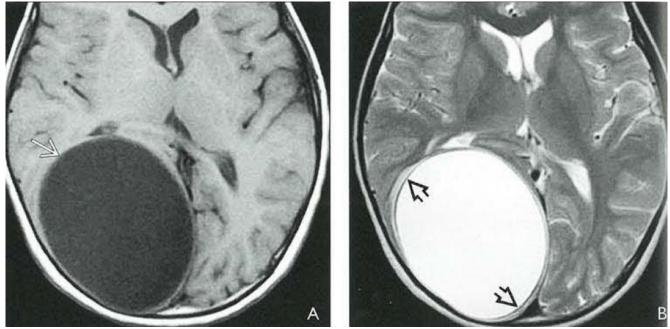
Inactive infection does not require treatment!

- anthelmintic *not indicated* when no longer enhancing and no edema.
- if cyst is calcified or ring-enhancing, treatment with anthelmintics is probably not necessary.

Antihelmintic drugs

N.B. steroids and aggressive management of hydrocephalus, should be performed prior to administration of anthelmintics!

- **steroids** for all patients concomitantly with anthelmintic (to reduce edema), start 2-3 d before antihelmintics.
- ALBENDAZOLE cysticidal agent of choice


<u>Surgery</u> – symptomatic cases:

INTRO (24)

- unclear diagnosis \rightarrow stereotactic **biopsy**.
- hydrocephalus \rightarrow CSF diversion, endoscopic resection.
- giant cysts (> 50 mm) when intracranial hypertension persists despite steroids \rightarrow resection.
- uncontrollable seizures \rightarrow resection.
- spinal / orbital cysts → resection (inflammation associated with medical treatment may cause worsening of symptoms or loss of vision)


ECHINOCOCCOSIS

Hydatid cyst (HC) – single large thin-walled cyst; no calcification, no edema, no enhancement, fluid isodense / isointense to CSF

Alveolar echinococcosis – multiple irregular cysts that enhance in ring-like / nodular / cauliflower patterns:

AMEBIC MENINGOENCEPHALITIS, ABSCESS

N. FOWLERI

- in immunocompetent young adults swimming in warm fresh water during the summer.
- *N. fowleri* invades the olfactory mucosa and enters brain along olfactory nerves.
- fatal within 48-72 hours.

BALAMUTHIA MANDRILLARIS

- ameba is present in soil
- causes encephalitis in both immunocompetent and immunocompromised