Neuroimaging (GENERAL)

Last updated: June 3, 2019

GENERAL PRINCIPLES

It is conventional for tomographic axial images (CT, MRI) - *left side of brain is on right of figure!!!*

MRI is more sensitive (than CT) for most lesions affecting brain / spinal cord parenchyma.

N.B. MRI cannot detect calcifications!

CT is more sensitive (than MRI) for osseous detail and acute hemorrhage.

N.B. CT has many artefacts in posterior fossa!

CT is preferable in acute trauma!

Angiography is very sensitive in cases where small-vessel detail is essential for diagnosis.

CT signal is dependent on *electron* density; MRI signal – *proton* density.

MOST USEFUL IMAGING MODALITIES

(usually also most cost-effective)

<table>
<thead>
<tr>
<th>NEUROLOGIC PROBLEM</th>
<th>IMAGING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlocalized symptoms</td>
<td>MRI (without and with contrast) - most sensitive for initial imaging</td>
</tr>
<tr>
<td>Diseases affecting primarily skull</td>
<td>CT (without contrast), X-ray</td>
</tr>
<tr>
<td>Acute hemorrhage</td>
<td>CT (without contrast) - best imaging method</td>
</tr>
<tr>
<td>Subacute hemorrhage</td>
<td>MRI</td>
</tr>
<tr>
<td>Highly suspected aneurysm (e.g. acute CN3 palsy, SAH on CT)</td>
<td>Angiography - definitive</td>
</tr>
<tr>
<td>Familial history of aneurysm or predisposing condition (e.g. polycystic kidney disease)</td>
<td>MRA - noninvasive and excellent screening</td>
</tr>
<tr>
<td>Suspected stroke</td>
<td>CT - fast + can detect hemorrhage or ischemic infarction</td>
</tr>
<tr>
<td></td>
<td>Diffusion-weighted MRI - fast + extremely sensitive for acute stroke</td>
</tr>
<tr>
<td>NEUROLOGIC PROBLEM</td>
<td>IMAGING</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Carotid or vertebral dissection</td>
<td>MRI / MRA</td>
</tr>
<tr>
<td>Vertebrobasilar insufficiency</td>
<td>MRI / MRA</td>
</tr>
<tr>
<td>Carotid stenosis</td>
<td>Doppler ultrasound (screening), MRA / CTA, angiography (definitive)</td>
</tr>
<tr>
<td>Vascular malformations</td>
<td>MRI (initial), angiography (definitive)</td>
</tr>
<tr>
<td>Meningeal disease</td>
<td>MRI (with contrast)</td>
</tr>
<tr>
<td>Cranial neuropathy</td>
<td>CT (to evaluate skull-base foramina) + MRI (with contrast); of cranial nerves, only CN2 can be directly visualized by CT</td>
</tr>
<tr>
<td>Headache</td>
<td>MRI</td>
</tr>
<tr>
<td>Suspected neoplasm / MS / white matter disorders / infection / inflammation</td>
<td>MRI (without and with contrast)</td>
</tr>
<tr>
<td>Dementia work-up</td>
<td>MRI (without contrast); rarely is contrast helpful - first test - detects possible causative lesions. PET / SPECT - may be helpful</td>
</tr>
<tr>
<td>Seizures / epilepsy</td>
<td>MRI (without and with contrast) - first test - to detect any causative lesion SPECT / PET / MRS / fMRI - other useful techniques</td>
</tr>
<tr>
<td>Head trauma</td>
<td>CT (without contrast) - acute MRI - follow-up</td>
</tr>
<tr>
<td>Intrinsic spinal cord lesion further see D70 p.</td>
<td>MRI (without and with contrast)</td>
</tr>
<tr>
<td>Extradural spinal process further see D70 p.</td>
<td>MRI (without and with contrast) CT myelogram - particularly useful for cervical spine degenerative disease</td>
</tr>
<tr>
<td>Peripheral nerve disorders</td>
<td>MRI</td>
</tr>
<tr>
<td>Paranasal sinus disorders</td>
<td>CT (exquisite bone detail highlighted by air); intracranial extent of neoplasm / infection is better evaluated by MRI</td>
</tr>
<tr>
<td>Middle ear disorders</td>
<td></td>
</tr>
<tr>
<td>Orbit disorders</td>
<td>CT / MRI</td>
</tr>
</tbody>
</table>

N.B. **dural enhancement** and **pial enhancement** have clearly different appearances - never use term "meningeal enhancement"!

INTRA VENOUS CONTRAST ENHANCEMENT

a) **iodinated** contrast media (for CT) see p. D49 >>

b) paramagnetic media usually containing **gadolinium** (for MRI)

c) radionuclides

Although many lesions are seen better with contrast medium, added information is often trivial compared with added cost and increased time of examination.
I. **Areas of increased vascular permeability** (CT and MRI contrasts provide identical information*)

*MRI has higher contrast-to-noise ratios - more sensitive for detecting contrast enhancement than is CT

- BBB is responsible for lack of significant enhancement in normal brain parenchyma (i.e. intravenous contrast only slightly increases density of normal brain).
- any BBB alterations → nonspecific contrast enhancement in brain parenchyma & leptomeninges.
- incidence of reaction is much lower with MRI contrast agents (vs. CT contrasts) - MRI is generally modality of choice when contrast-enhanced CNS examination is indicated.

Clinical situations in which contrast is **recommended**:
1. Infection
2. Inflammation
3. Neoplasia
4. Process thought to involve leptomeninges, nerve roots
5. Seizures
6. Spinal:
 1) intramedullary lesions
 2) subarachnoid lesions
 3) extradural malignant lesions
 4) postoperative spine (to separate scar [enhances] from recurrent disk [does not enhance])

Clinical situations in which contrast is **not recommended**:
1. Hemorrhagic event
2. Ischemic event
3. Congenital anomaly
4. Head trauma
5. Neurodegenerative disease (dementias, etc)
6. Hydrocephalus
7. Spinal cord – trauma, degenerative disease (not operated)

II. **Abnormal collections of blood vessels** – only for CT (in MRI, vascular enhancement depends on velocity of blood flow and specific MRI sequence used).

NORMALLY ENHANCING STRUCTURES

1. Lack of BBB - dural structures (falx and tentorium), pituitary gland, pineal gland.
2. Blood (contains contrast material) - vessels (esp. slowly flowing blood within cavernous sinus or cortical veins), choroid plexus.

ALLERGY TO CONTRAST
(e.g. patient allergic to shellfish)

Premedication:
1. **PREDNISONE** (50 mg oral) – three doses: 13, 7, and 1 hour before study
2. **DIPHENHYDRAMINE** (50 mg oral) 1 hour before study

KIDNEY FAILURE
After *iodinated contrast* – *hemodialysis* on patient’s regular schedule.
After *gadolinium* – *hemodialysis* for three consecutive days (start immediately after MRI).

PEDIATRIC NEUROIMAGING

‘Child is not small adult’

SEDATION
- sedation (or general anaesthesia) is usually required for *young children* (lack of head movement is essential during study) for many procedures

a) **PENTOBARBITAL**, 4 mg/kg IM 30 min before CT ± supplementary 2 mg/kg IM 1-1½ hr later.

b) **CHLORAL HYDRATE**, 50-75 mg/kg PO 45 min before CT.

FETAL NEUROIMAGING

- early detection of *congenital malformations* / *destructive lesions* → termination of pregnancy.

a) *early pregnancy* – ultrasound; *ventriculomegaly* is most obvious early fetal sign of intracranial abnormality; malformations that are possible to detect in early pregnancy - Chiari II malformation, Dandy–Walker malformation, acrania, agenesis of corpus callosum and holoprosencephaly.

 N.B. *ventricles are normally large* in fetus < 20 weeks’ gestation!
 N.B. fetal *brain is smooth* with few if any developed sulci - migrational malformations (e.g. agyria) are impossible to detect prior to 18 weeks’ gestation.

b) *late pregnancy* – MRI.

 N.B. only in some countries (such as France) it is possible for medical reasons to terminate pregnancy very late, close to full term!

NEONATAL NEUROIMAGING

- to establish as accurate diagnosis as possible – to predict future handicap.

 N.B. *neuroradiology is not useful in establishing normality* - cannot predict future normal neurological development in newborn who has recovered from episode of perinatal hypoxia.

- choice of imaging technique is important - sick newborn may be difficult to transport to radiology department – bedside *sonography* is preferred technique – can detect *periventricular* pathology (but *more peripheral* pathology may be difficult to detect; H: CT/MRI).
- **CT** could wait until at least 6 (preferably 12) months of age (e.g. to give abnormal calcifications time to develop).
- normal ultrasound + normal CT = most major malformations and acquired lesions are excluded → **MRI** (wait until brain is fully mature at ≈ 18 months) - to assess detailed *cortical* anatomy.
- MRI is also used to assess *myelination* course.

BIBLIOGRAPHY for ch. “Diagnostics” → follow this [LINK >>](#)