Last updated: September 5, 2017

REFRACTIVE POWER	1
ACCOMMODATION	1
VISUAL ACUITY	
CRITICAL FUSION FREQUENCY (CFF)	
VISUAL FIELDS & BINOCULAR VISION	
TENOTIFIE TENEDO & PITTO CONTIEN. TENIOTI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	,. <u>–</u>

light rays are bent (refracted) when they pass from one medium into medium of different density (except when they strike perpendicular to interface).

- parallel light rays striking biconvex lens are refracted to point (FOCAL POINT) behind lens; biconcave lenses cause light rays to diverge.
- focal point is on line passing through centers of lens curvature (principal
- distance between lens and focal point is FOCAL DISTANCE.
- for practical purposes, rays from object > **6 m** away are parallel (rays from object closer than 6 m are diverging → brought to focus farther back than principal focus).

A: Biconvex lens.

B: Biconvex lens of greater strength than **A.**

C: Same lens as A, showing effect on light rays from near point.

D: Biconcave lens.

X is focal point

REFRACTIVE POWER

KTOR'S NOTES

- greater lens curvature, greater its refractive power.
- <u>refractive power (P) is measured in **DIOPTERS** (reciprocal of focal distance in meters);</u>

P = 1 / focal distance

e.g. lens with principal focal distance of 0.25 m has refractive power of 4 diopters (i.e.1/0.25).

- human eye has refractive power \approx 60 diopters at rest; light is refracted at:
 - 1) anterior **cornea** surface > 40 D
 - 2) anterior and posterior lens surfaces ≈ 20 D.
- if light rays are *parallel* when they enter lens, they will converge at FOCAL PLANE.

relationship between object distance (o), focal distance (f), and image distance (i) is given by LENS FORMULA:

$$P = P \frac{1}{o} + \frac{1}{i} = \frac{1}{f}$$

"Reduced" (s. "schematic") eye - drawing eye diagrammatically as if all refraction occurs at anterior cornea surface; nodal point (optical eye center - light rays pass without refraction) coincides with junction of middle and posterior third of lens. if object height (AB) and distance (Bn) are known, size

- of retinal image can be calculated, because AnB and anb are similar triangles. angle AnB is visual angle subtended by object AB.
- N.B. retinal image is inverted.

ACCOMMODATION

- when ciliary muscle is relaxed, parallel light rays are brought to focus on retina; rays from objects closer than 6 m are brought to focus behind retina \rightarrow objects appear blurred.
- in mammals, problem is solved by increasing lens curvature called **accommodation**. at rest, lens is held under tension by lens ligaments (pulled into flattened shape).
- when ciliary muscle contracts, it relaxes lens ligaments \rightarrow lens springs into more convex shape.
- in young individuals, change in lens shape may add as many as 12 diopters (up to 72 D total)!
- relaxation of lens ligaments is produced by contraction of: 1) **circular** ciliary muscle fibers (sphincter-like action)
 - 2) longitudinal ciliary muscle fibers (that attach anteriorly, near corneoscleral junction -
 - pull whole ciliary body forward and inward brings edges of ciliary body closer together). accommodation affects principally anterior lens surface;
- posterior lens surface is changed very little. accommodation is active process (can be tiring) - ciliary
 - muscle is one of the most used body muscles! accommodation goes together with convergence and miosis* (near reaction).

*Role of pupilloconstriction during accommodation – reducing chromatic and spherical aberrations. CHROMATIC ABERRATION - difference in focus (or magnification) of image arising because of difference in refraction of different wavelengths composing white light. SPHERICAL ABERRATION - monochromatic aberration when *paraxial* and *peripheral* rays focus along axis at different points.

Decline in accommodation amplitude with advancing age (different symbols identify data from different studies).

- degree to which lens curvature can be increased is limited; NEAR POINT (s. punctum proximum) nearest point at which object can still be brought into clear focus by accommodation.
- near point recedes throughout life (due to increasing lens hardness):

8,3 cm - at age 10 (due to 12 D maximal accommodation);

83 cm - at age 60;

at age 40-45, accommodation loss is sufficient to make reading and close work difficult (*presbyopia*).

FAR POINT – distance from which object is clearly seen without accommodation; norma – 6 m.

VISUAL ACUITY

- degree to which object details and contours are perceived.
 - complex phenomenon influenced by large variety of factors:
 optical factors (e.g. state of image-forming mechanisms of eye);
 retinal factors (e.g. state of cones);
 stimulus factors (e.g. illumination, brightness of stimulus, contrast between stimulus

Clinically, visual acuity is defined in terms of **minimum separable** (shortest distance by which two lines can be separated and still be perceived as two lines) - determined with Snellen letter charts.

Minimum separable in normal individual is visual angle of 1 minute!

**see p. D1eye >>

and background, length of time subject is exposed to stimulus).

CRITICAL FUSION FREQUENCY (CFF)

- rate at which stimuli can be presented and still be perceived as separate stimuli.
 - stimuli presented at higher rate than CFF are perceived as continuous stimuli (e.g. motion pictures; movies begin to flicker when projector slows down).

VISUAL FIELDS & BINOCULAR VISION

- theoretically, visual field of each eye should be circular, but actually it is cut off medially by nose and superiorly by orbit roof.
- central visual fields are mapped with tangent screen (black felt screen across which white target is moved).
- peripheral portions of visual fields are mapped with **perimeter** (process is called **perimetry**).
- central parts of visual fields of two eyes coincide (BINOCULAR VISION).
- impulses set up in two retinas by light rays from object are *fused at cortical level* into single image (**fusion**).
 retinal points on which image must fall if it is to be
- seen binocularly as single object are called corresponding points.

 DEPTH percention:
- <u>DEPTH perception</u>:
 - binocular vision
 monocular comp
 - 2) monocular components relative sizes of objects, their shadows, movement relative to one another (movement parallax).

solid line, that of right eye.
common area (heart-shaped clear zone in
center) is viewed with binocular vision; colored
areas are viewed with monocular vision.

<u>BIBLIOGRAPHY</u> for ch. "Ophthalmology" \rightarrow follow this LINK >>

Viktor's Notes[™] for the Neurosurgery Resident