Osteomyelitis

Last updated: August 8, 2020

CRANIAL OSTEOMYELITIS

<table>
<thead>
<tr>
<th>CRANIAL OSTEOMYELITIS</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>1</td>
</tr>
<tr>
<td>Clinical Features</td>
<td>1</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>1</td>
</tr>
<tr>
<td>Treatment</td>
<td>1</td>
</tr>
</tbody>
</table>

VERTEBRAL OSTEOMYELITIS (S. INFECTIVE SPONDYLITIS)

<table>
<thead>
<tr>
<th>VERTEBRAL OSTEOMYELITIS (S. INFECTIVE SPONDYLITIS)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Features</td>
<td>2</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>2</td>
</tr>
<tr>
<td>Treatment</td>
<td>4</td>
</tr>
</tbody>
</table>

INFECTIOUS DISKITS

<table>
<thead>
<tr>
<th>INFECTIOUS DISKITS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>4</td>
</tr>
<tr>
<td>Clinical Features</td>
<td>4</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>4</td>
</tr>
<tr>
<td>Treatment</td>
<td>4</td>
</tr>
</tbody>
</table>

VERTEBRAL EPIDURAL ABSCESS

<table>
<thead>
<tr>
<th>VERTEBRAL EPIDURAL ABSCESS</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>5</td>
</tr>
<tr>
<td>Clinical Features</td>
<td>5</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>5</td>
</tr>
<tr>
<td>Treatment</td>
<td>5</td>
</tr>
</tbody>
</table>

GENERAL FEATURES of osteomyelitis → see p. 1192 (2.3) >>

CRANIAL OSTEOMYELITIS

ETIOLOGY

1. Direct extension from paranasal sinuses, ear (e.g. *malignant external otitis* see p. Ear4 (2.3))
2. Penetrating skull injury
3. Infected craniotomy flap, skeletal traction
4. Hematogenous

GRADINIEWSKY’S syndrome – optical petrositis (osteomyelitis) involving CNS & CN6. see p. CNS >>

CLINICAL FEATURES

- pain, tenderness, swelling, warmth at infected site.
 - drainage of purulent material if open wound is present.
 - if systemic symptoms are present, underlying subdural / epidural empyema is commonly present.

DIAGNOSIS

1. Plain skull film (positive > 50%)
2. CT
3. Technetium bone scans (helpful if skull radiographs are negative);
 - *tale positive in old trauma or previous craniotomy; H. gallium scan* (differentiates infection from other causes of positive technetium scan).

TREATMENT

1. Surgical debridement (removal of infected bone)
 - adequate margin of normal bone is removed to minimize risk of recurrence.
 - after at least 1 year with no evidence of inflammation, cosmetic / protective cranioplasty may be performed.
2. Antibiotics
 - MREA is treated with 6 weeks of *VANCOMYCIN*; if hardware is present (e.g. cranial mesh), add *EFAMPIN*.

VERTEBRAL OSTEOMYELITIS (S. INFECTIVE SPONDYLITIS)

- septic disco-vertebral lesion

<table>
<thead>
<tr>
<th>VERTEBRAL OSTEOMYELITIS (S. INFECTIVE SPONDYLITIS)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>1</td>
</tr>
<tr>
<td>Clinical Features</td>
<td>1</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>1</td>
</tr>
<tr>
<td>Treatment</td>
<td>1</td>
</tr>
</tbody>
</table>

INFECTIVE of vertebrae usually involve disk space (vs. *malignant lesions*!)

- disseminated via small nutrient arteries, bacteria lodge in metaphysis beneath end-plate of vertebra (usually anteriorly) → quickly extend into adjacent disc and end-plate of opposite vertebra.

In children, because the disk is vascularized, it can be a primary site.

- complications, *paraspinal extension* (along spine, beneath paravertebral ligaments, etc) - paraspinal abscess, anterior epidural abscess.
 - paraspinal masses are large in indolent forms of infection (such as tuberculosis).
Radiographic changes of spinal tuberculosis: (on plain films):

1. Lysis destruction of anterior portion of vertebral body
2. Reactive sclerosis on a progressive lytic process
3. Enlarged psoas shadow with or without calcification; fusiform paravertebral shadows suggest abscess formation

In contrast to pyogenic disease, *calcification is common in tuberculous lesions!*

4. Vertebral end plates are osteoporotic
5. Intervertebral disks may be shrunk or destroyed
6. Vertebral bodies show variable degrees of destruction → collapse with anterior wedging
7. Bone lesions may occur at more than one level

CLINICAL FEATURES

Obtain bacteria identification ASAP (e.g. blood culture) before starting antibiotics! (else may need IR biopsy)

1. ESR ↑ (73.1%), CRP, WBC (30%)
2. X-ray (changes may take weeks + months to appear!):
 1. Progression narrowing of disk space
 2. Erosion and destruction of adjacent vertebral end-plates → body collapse → wedging
 3. Sclerosis, sharp kyphosis (ribbed bones).
3. Paravertebral soft-tissue masses:
 - Cervical spine - focal swellings of retropharyngeal soft-tissue stripe; thoracic spine - displacement of paraspinal lines; lumbar spine - lost psoas muscle shadow.

Diagnosis

- course tends to be subacute (patients with hematogenous spread are spared)
- Spine tenderness unrelieved by rest.
- Fever
- Deep back pain exacerbated by motion (movement restriction by muscle spasm), may be unrelated by rest.

Most common primary sources of infection (can be identified only in 40% patients): urinary tract, skin, lungs.

- well-recognized risk factor - IV drug use.

Etiology

- Hemorrhagic spread (rarely, direct extension!):
 1. Pyogenic bacteria - streptococci are most common! (~ 50%)
 2. M. tuberculosis (Pott's disease) – one of the oldest demonstrated diseases of humankind (in 1779, Percivall Pott presented the classic description of spinal tuberculosis).

 - rare in West; still a significant cause of disease in developing countries;
 - affects young adults.
 - 80% patients have no evidence of pulmonary involvement.
 - Most frequent in lower thoracic + upper lumbar vertebrae:
 - Tendency to involve multiple segments (through subligamentous paraspinous spread).
 - Discs frequently are spared until later in course. – “skip” lesions

 E.g. complications of discography, lumbar puncture

Specific MRI findings of tuberculosis:

1. Intervertebral osteomyelitis (L4-safran T1-MRI):
 - Diffuse low intensity throughout L45 vertebral bodies, and even lower signal from intervening disc space (which is barely visible because of loss of dark line of vertebral endplates); little epidural soft tissue thickening suggesting extraspinal extension.

2. Subligamentous extension:

 - Occasionally, **nondisco genic forms** (involving only vertebral bodies or neural arches) are encountered - difficult to distinguish from neoplasia, metastases!
Infectious spondylitis at T6-7:
A) lateral radiograph - disc space narrowing, erosion of adjacent vertebral end-plates (arrow), reactive sclerosis in inferior vertebra.
B) CT - bony destruction; note extent of associated paraspinal soft-tissue mass (arrow).

Thoracic tuberculous spondylitis:
A) paraspinal soft-tissue mass in AP radiograph; involved disc space is difficult to resolve.
B) disc space obliteration and destruction of adjacent vertebral end-plates.

Tuberculous spondylitis with subligamentous extension (sagittal thoracic tomogram) - obliteration of disc space and destruction of adjacent vertebral end-plates in midthoracic spine; superior and inferior subligamentous extension is manifested by erosions of anterior vertebral body margins over several levels (arrows).

Pyogenic spondylitis:
A) lateral X-ray at L4-L5 - marked narrowing of disc space, loss of sharp vertebral end-plate margins, and mild reactive sclerosis in L4 vertebral body.
B) T1-MRI - extensive abnormal low signal within adjacent vertebral bodies and intervening disc, with loss of hypointense border at vertebral margins.
C) postcontrast T1-MRI - pronounced enhancement of involved vertebra and portions of infected disc; no epidural involvement.
D) fat-suppressed T2-MRI - edema in vertebral bodies, abnormally bright signal in infected disc - corresponding to areas of low signal intensity in postgadolinium MRI (arrowheads).
INFECTIONOUS DISKITIS

ETYMOLOGY
- usually iatrogenic (complication of previous surgery or needle puncture of intervertebral disks) - most often staphylococci!

N.B. TB (Pott’s disease) tends to spare disc space in vertebral osteo - highly aerobic bacteria!

CLINICAL FEATURES
1) severe pain aggravated by palpation; partially relieved by recumbency.
2) muscle spasm
3) fever
• interspace infections must be observed closely – risk of epidural abscesses!

DIAGNOSIS
Early in course:
• X-rays and CT are normal!
• gallium scans may be falsely positive because of recent surgery.

Later in course - destructive changes along edges of disk space, narrowing of intervertebral space.
• CT demonstrates these changes early.

Needle biopsy of involved interspace identifies causative bacteria (cultures are often sterile → direct surgical biopsy).

TREATMENT
1) bed rest, medication for pain and muscle spasms.
2) antibiotic therapy (empirically – against staphylococci).
3) no response to conservative therapy → open surgery (remove infected material from interspace).
VERTEBRAL EPIDURAL ABSCESS

ETIOLOGY
- Typically – hematogenous Staph; other – osteodiscitis epidural extension.

CLINICAL FEATURES
- acute septic course with severe axial back pain.
- early neurological deficits.

DIAGNOSIS
- Tends to spread up and down.
- collection avidly rim-enhances.

TREATMENT
1) surgical debridement (unless small collection in neuro intact patient).
2) 4-6 weeks of antibiotics

Long abscesses - skip laminotomies and pediatric feeding tube / EVD irrigation:

BIBLIOGRAPHY for ch. “Infections of Nervous System” – follow this LINK >>