Sturge-Weber syndrome (Encephalotrigeminal Angiomatosis)

Last updated: April 17, 2019

PATHOPHYSIOLOGY	••••••••••••
ETIOLOGY	•••••••••••
EPIDEMIOLOGY	
PATHOLOGY, CLINICAL FEATURES	
Roach Scale classification	
DIAGNOSIS	,
DIAGNOSIS	

STURGE-WEBER SYNDROME - congenital SPORADIC phacomatosis with capillary venous ANGIOMAS in leptomeninges, skin of face, eye.

PATHOPHYSIOLOGY

- residual embryonal blood vessels with secondary effects on surrounding brain tissue.
- normally, in 6th week vascular plexus develops around cephalic portion of neural tube, under ectoderm destined to become facial skin; vascular plexus regresses around 9th week of gestation.
- failure of normal regression \rightarrow angiomata.
- neurologic dysfunction results from secondary effects:
 - a) "vascular steal" around angioma → hypoxia, ischemia
 - b) venous occlusion, thrombosis, infarction.
- secondary effects are aggravated by recurrent seizures (even when short) \rightarrow progressive dystrophic calcification*, gliosis, atrophy \rightarrow neurologic deterioration, seizures\.

Although leptomeningeal angioma is static anatomic lesion, syndrome has progressive nature!

*N.B. calcifications are located primarily in cerebral substance rather than in vessel walls

ETIOLOGY

- no recognizable genetic contribution; *somatic mutations* affecting:
 - a) structure blood vessels (vessel circumference decreased, while vessel density increased)
 - b) innervation of blood vessels (malformed vessels innervated only by noradrenergic sympathetic fibers)
 - c) expression of extracellular matrix (fibronectin \(\)) and vasoactive molecules (endothelin-1 expression↑ in malformed vessels).

EPIDEMIOLOGY

<u>INCIDENCE</u> - 1 per 50,000

PATHOLOGY, CLINICAL FEATURES

All lesions (if unilateral) tend to be ipsilateral!

No increased propensity for cancer!!!

- 1. <u>Leptomeningeal angiomas</u>
 - **unilateral** (85%) > bilateral (15%).
 - most common in parietal and occipital regions.
 - ipsilateral features cerebral hemiatrophy, hemihypertrophy of skull and sinuses, enlarged choroid plexus, abnormal myelination.
 - cortical veins are either absent or replaced by few enlarged cortical veins. neurologic manifestations:
 - - 1) seizures (72-93%) typically focal; may be intractable; 75% before age of 1 year, 95% begin before 5 years.
 - 2) **focal deficits** (esp. hemiparesis [25-56%], homonymous hemianopsia [44%]) may be transient ("strokelike episodes"), but otherwise slowly progressive. 3) vascular headaches ("symptomatic migraine") (44-77%)

 - 4) developmental disorders (50-75%) (developmental delay, learning disorders, mental retardation) - more common when angiomas are bilateral.

N.B. major intracranial hemorrhage is rare!

2. <u>Cutaneous angioma</u> ("port-wine stain" s. nevus flammeus) (87%) in skin of face. N.B. most patients with facial port-wine stains do not have SWS!

N.B. presence of port-wine stain implies neither presence nor severity of intracranial leptomeningeal angiomatosis (only 8% of facial port-wine stains have this association)

- typically in V_1 and V_2 distributions of CN5.
 - CNS is not affected if port-wine stain does not involve V₁ area! unilateral (49-86%; ipsilateral to CNS lesion) > bilateral (14-51%).
- presents at birth suspicion of diagnosis in neonate! can be progressive (light pink macule \rightarrow dark red or purple nodular lesion).

- 3. Glaucoma (30-71%) \rightarrow buphthalmos (hydrophthalmia) \rightarrow blindness. N.B. glaucoma typically occurs only when port-wine stain involves eyelids!; if port-wine stain is unilateral, glaucoma is ipsilateral!
 - causes: mechanical angle obstruction, episcleral venous pressure, secretion of aqueous fluid (by choroidal hemangioma or ciliary body).

- VIKTOR'S NOTES
 - may be present at birth but can develop at any age.
 - 4. Eye hemangiomas choroidal (40%), conjunctival, episcleral.

ROACH SCALE CLASSIFICATION

Type I - both *facial* and *leptomeningeal* angiomas; may have glaucoma.

Type II - *facial* angioma alone (no CNS involvement); may have glaucoma.

 $\textbf{Type III} \text{ -} \text{ isolated } \textcolor{red}{\textit{leptomeningeal}} \text{ angiomas; usually no glaucoma.}$

DIAGNOSIS

Structural versus functional mismatch (functional neuroimaging demonstrates greater area of involvement than structural neuroimaging) - especially important when considering epilepsy surgery!

<u>Skull X-ray</u> – pathognomonic subcortical "*tram-track*" *calcifications* in gyriform pattern (late finding – usually in patients > 2 yrs) - paired parallel lines that follow cerebral convolutions.

N.B. **calcification in ipsilateral* outer cortex** rather than of blood vessels or white matter!

*ipsilateral to port wine stain

• underlying ipsilateral cerebral atrophy → ipsilateral skull-table and orbital thickening, elevation of sphenoid wing and petrous ridge, enlarged ipsilateral paranasal sinuses and mastoid air cells.

"Tram-track" calcifications:

Smaller hemicranium on affected side:

Angiography – does not show angioma! (or early capillary blush)
 lack of superficial cortical veins → nonfilling of dural sinuses (with absence of cortical

veins, venous drainage occurs via enlarged tortuous transcortical veins into deep venous system).

CI:

- "tram-track" calcifications under angioma (in infants and even neonates)
 adjacent cortical atrophy.
- Shrunken ce

Shrunken cerebral lobe with calcified cortex enlarged ipsilateral choroid plexus & enlarged draining transcortical draining veins.

- BBB breakdown (during seizures).
- BBB bleakdown (during scizures)

MRI:

- T2 hyperintense leptomeningeal thickening and enhancement.
 - gadolinium enhancement of angioma (appears as enhancement of subarachnoid space, medium covering cortical gyri and filling sulci) early diagnosis!
 - N.B. enhancement is difficult to assess on CT in presence of calcification! adjacent **cortical atrophy**, accelerated / delayed myelination around angioma.

- enlarged ipsilateral choroid plexus (size correlates with angioma extent) & enlarged draining transcortical draining veins.
- progressive sinovenous occlusion \rightarrow lack of superficial cortical veins (on MRV).

Contrast T1-MRI - right cerebral atrophy, enhancing right occipital cortex, enlarged right choroid plexus:

Contrast T1-MRI - intense pial enhancement and subjacent cerebral atrophy:

SPECT: hyperperfusion (in infancy, before first seizures) \rightarrow classic hypoperfusion of involved hemisphere (after 1 year of age, even in those without epilepsy).

steal phenomenon (during seizures).

 $\underline{\mathbf{PET}}$ – hypometabolism.

EEG – marked *voltage attenuation* in region of angioma; background suppression (74%); polymorphic delta activity; epileptiform discharges in remainder of cortex (22%).

Biopsy – typically not performed.

TREATMENT

1. Seizure control improves neurologic outcome!

N.B. epilepsy surgery should not be delayed (ideally – during infancy)! controversy regarding optimal timing of surgery: early surgery might preempt cognitive deficits from chronic, intractable epilepsy vs. early surgery might subject some patients to surgery risks.

- complete seizure control is achieved in 10-50% patients; refractory seizures occur in 11-83%.
- epileptogenic region is located in cortex adjacent to angioma. localize area of seizure onset preoperatively by video EEG, ECOG, functional
- neuroimaging (e.g. ischemic regions may act as epileptogenic foci that may not be detected by CT / MRI). 1) Focal cortical resection – when epileptogenic region is smaller and more localized.
- 2) Hemispherectomy (anatomical hemispherectomy or functional hemispherectomy or
- hemidecortication) for extensive, unilateral epileptogenic region; hemispherectomy is more successful if done during infancy!
- 3) Corpus callosotomy for bilateral disease (intractable atonic or tonic seizures leading to secondary injury). 4) Vagus nerve stimulation (VNS) – for those who are not candidates for other surgical
- procedures. 2. Prophylactic daily low-dose ASPIRIN - for headaches, stroke-like events (may be result of

N.B. varicella and yearly influenza immunizations (varicella / influenza + aspirin → Reye syndrome)

- 3. Cosmetic *laser therapy* ASAP for port-wine stain (earlier treatment fewer laser flashes needed to remove lesion). 4. IOP control

progressive venous thrombosis).

<u>BIBLIOGRAPHY</u> for ch. "Phakomatoses" → follow this LINK >>

Viktor's Notes[™] for the Neurosurgery Resident