Subdural Hygroma (s. Subdural Effusion)

Last updated: January 7, 2022

ETIOLOGY, PATHOPHYSIOLOGY	1
Further course	
CLINICAL FEATURES	
Complications.	
DIAGNOSIS	
TDEATMENT	······ :

<u>SUBDURAL HYGROMA</u> - excessive CSF collection in subdural space. [Greek *hygros* – wet]

ETIOLOGY, PATHOPHYSIOLOGY

- 1. MOST COMMON CAUSE **cranial trauma** with arachnoid tearing and arachnoid-dura separation (→ CSF escape into subdural space) **TRAUMATIC SUBDURAL HYGROMA**.
 - develops in $\approx 10\%$ severe head injuries.
 - skull fractures are found in 39% cases.
 - predisposing factors: *cerebral atrophy* (present in 19% hygromas), vigorous therapeutic dehydration (iatrogenic brain collapse), intracranial hypotension (e.g. in prolonged lumbar drainage), pulmonary hypertension (e.g. in chest trauma, pneumonia).
 - CSF is usually xanthochromic.
 - may accumulate immediately after trauma or in delayed fashion.
 - most likely locations of arachnoid tears: sylvian fissure, chiasmatic cistern.
 - "complex hygroma" associated with other intracranial lesions (subdural hematoma, epidural hematoma, intracerebral hemorrhage, etc).
- 2. **Infection** of meninges or skull (most commonly influenzal meningitis or mastoiditis).
- 3. Rupture of arachnoid at basal cistern in **communicating hydrocephalus**.
- 4. **Complication of ventricular shunting**; in patients with shunts (esp. if overdrainage occurs), disruption* of arachnoid can lead to hygroma.
 - *spontaneous or elicited by minor head trauma or previous arachnoid injury (e.g. ventricular tap, intracranial pressure sensor).
 - best prevention is use of shunt alternative (third ventriculostomy) or overdrainagelimiting device.
 - increasing valve opening pressure or using flow-rate-limiting system can be successful treatment.
- 5. **Complication** of arachnoid cyst marsupialization or resection.
- 6. Rare complication of spinal anesthesia causing CSF leak.

FURTHER COURSE

- A. <u>Spontaneous RESOLUTION</u> of subdural collection along with cerebral expansion.
- B. <u>Hygroma PROGRESSION</u>: transudation / further CSF accumulation (flap-valve mechanism) → increasing brain dislocation → rupture of bridging veins* → bleeding into newly formed subdural space (well documented *transformation to subdural hematoma*) → neomembrane (capsule) formation (chronic subdural hematoma).

*stretch of draining veins by hygroma can cause multiple venous infarcts

CLINICAL FEATURES

- A. Asymptomatic
- **B.** May increase in size (due to flap-valve mechanism, bleeding) → *mass effect* with significant morbidity similar (in character and evolution) to subdural hematoma:
 - ICP↑ (headaches, nausea, decreased level of consciousness)
 Focal signs
 - 2. Focal signs

COMPLICATIONS 1. Proin hormistic

- 1. Brain **herniation**
- 2. Transformation into **subdural empyema**

DIAGNOSIS

Neuroimaging - crescent-shaped extraaxial collection with CSF density (hard to separate from chronic subdural hematoma!!!; H: MRI); commonly bilateral.
 differentiation from BRAIN ATROPHY:

- in hygroma gyri are significantly displaced away from calvaria, occasional slight mass
 - effect, no widening of cortical sulci (sulci even may be obliterated due to mass effect).

 in *cerebral atrophy*, appearance of bilateral frontal "subdural hygromas" may be seen when
 - patient is supine; similar finding can be seen in *young children* (benign enlargement of subarachnoid space should resolve in first 2 years of life).
 "cortical vein sign" on gadolinium MRI cortical veins and their branches are seen
 - traversing widened CSF spaces over cerebral convexities evidence of *cerebral atrophy* (<u>rules out diagnosis of subdural hygroma</u>*).

 *hygroma displaces cortex and cortical veins → cortical veins seen only at margin of

displaced cortex, and do not traverse fluid collections over cerebral convexities.

<u>Definitive diagnosis</u> - only by <u>trephine openings</u> in skull:

classically chronic subdural hematoma contains dark "motor oil" fluid which does not

- clot.
 if subdural fluid is *clear*, collection is termed **subdural hygroma**; hygroma fluid (i.e. CSF)
- contains *prealbumin* (not present in subdural hematoma) and may be under high pressure.
- A. CT left frontal subdural hygroma (9th day).

 B. Enhanced density and heterogeneous appearance (53rd day) signs of subdural bleeding into hygroma space
- C. Reduction of hygroma, with probable neomembrane (117th day).
- D. Resolution of subdural collection (730th day).

Source of pictures: Marco Antonio Zanini et al. "Traumatic Subdural Hygroma"; Arq Neuropsiquiatr 2007;65(1):68-72 >>

A. CT - bilateral frontal subdural hygroma (12th day).

Source of pictures: Marco Antonio Zanini et al.

compressing frontal lobes (black arrows):

- B. T1-MRI (no contrast) laminar subdural hematoma, without compression on underlying brain (191st day).
- C. T1-MRI (with contrast) peripheral enhancement (191st day).

Fraumatic Subdural Hygroma"; Arq Neuropsiquiatr 2007;65(1):68-72 >>

Gadolinium T1-MRI - diffuse, high enhancement of pachymeninges (small black arrows) together with bifrontal hygromas

Source of pictures: J. S. P. van den Berg et al. "Subdural Hygroma: A Rare Complication of Spinal Anesthesia"

Small, low-density, extra axial collection over right frontal lobe; slight mass effect; adjacent sulci are compressed:

Benign enlargement of subarachnoid space in child (CT) – no mass effect; normally resolves within first 2 years of life:

Source of picture: Andrew L Wagner, MD, Subdural Hematoma: Multimedia >>

Postoperative MRI - child with large cystic craniopharyngioma and hydrocephalus; sudden tumor removal and hydrocephalus decompression resulted in subdural hygroma formation (small arrows); hygroma stretched draining veins, causing multiple venous infarcts (open arrow):

Company; ISBN-10: 0721668453; ISBN-13: 978-0721668451 >>

TREATMENT

 $\underline{Asymptomatic} \rightarrow \underline{observation}$ (usually resolve spontaneously within several months). N.B. observation leaves risk of transformation into subdural hematoma (which already requires **craniotomy**).

Symptomatic (esp. deteriorating clinical status accompanied by hygroma volume with brain compression \rightarrow herniation) \rightarrow surgery: external burr-hole drainage;

- maintain subdural drain for 24-48 hrs post-op; if satisfactory resorption does not occur → shunting of subdural space. recurrence following simple burr-hole drainage is common; for recurrent cases:
- a) *craniotomy* to locate site of CSF leak (may be very difficult)
 - b) subdural-peritoneal *shunt*.

<u>BIBLIOGRAPHY</u> for ch. "Head Trauma" \rightarrow follow this LINK >>

Viktor's Notes[™] for the Neurosurgery Resident